Analysis Qualifying Examination

Tuesday, January 19, 2021, Noon–5:00pm

INSTRUCTIONS: Work 5 of the following 6 problems. Write on only one side of each page. Each problem is worth 20 points.

- 1) Suppose: (X, d) and (Y, ρ) are metric spaces; (Y, ρ) is compact; and $\phi: Y \to X$ is a continuous and onto function.
 - a) A well-known theorem states that if $F \subseteq Y$ is compact, then $\phi(F)$ is also compact. Prove this theorem, and conclude that (X, d) is a compact metric space.
 - b) Suppose $G \subseteq X$ and $\phi^{-1}(G)$ is an open set. Prove that G is an open set.
- 2) Let $(a_n)_{n=1}^{\infty}$ be a bounded sequence of real numbers. Being sure to include all details, prove that

$$\liminf_{n \to \infty} a_n \le \liminf_{n \to \infty} \frac{a_1 + a_2 + \dots + a_n}{n}.$$

(Suggestion: Notice that for $n, N \in \mathbb{N}$ and n > N, $\frac{a_1 + \dots + a_N}{n} + \frac{a_{N+1} + \dots + a_n}{n} = \frac{a_1 + \dots + a_n}{n}$. Approximate $\frac{a_{N+1} + \dots + a_n}{n}$ in terms of $\liminf_{n \to \infty} a_n$ and examine what happens if you hold N fixed and let n grow.)

3) Suppose $f:[a,b] \to \mathbb{R}$ is Riemann integrable and $\int_a^b |f(t)| dt = 0$.

- a) If f is continuous, prove that f(t) = 0 for every $t \in [a, b]$.
- b) Give an example (with proof) of a non-zero Riemann integrable function such that $\int_a^b |f(t)| dt = 0$.

4) Let $Y \subseteq [0,1]$ be the usual Cantor set¹ and let C(Y) be the collection of all continuous complex-valued functions on Y. A function $p \in C(Y)$ is a *projection* if for every $y \in Y$, $p(y)^2 = p(y)$.

Given $f \in C(Y)$ and $\varepsilon > 0$, prove that there exists $n \in \mathbb{N}$, projections $\{p_k\}_{k=1}^n \subseteq C(Y)$ and complex numbers $\{\alpha_k\}_{k=1}^n$ such that for every $y \in Y$,

$$\left|f(y) - \sum_{k=1}^{n} \alpha_k p_k(y)\right| < \varepsilon$$

5) Suppose (a_n) is a decreasing sequence of real numbers and $\sum_{n=1}^{\infty} a_n$ converges. Prove that $\lim_{n\to\infty} na_n = 0$.

- 6) For $x \in \mathbb{R}$, consider the series, $\sum_{n=1}^{\infty} \frac{1}{n^2 + x^2}$.
 - a) Prove this series converges for every $x \in \mathbb{R}$.
 - b) Set $f(x) = \sum_{n=1}^{\infty} \frac{1}{n^2 + x^2}$. Prove that f is differentiable at each $x \in \mathbb{R}$. Also, find a formula for f'(x) (in terms of a series) being sure to justify that your formula is correct

of a series), being sure to justify that your formula is correct.

¹Recall this is the set obtained by removing (1/3, 2/3) from [0, 1], then removing the middle third from the remaining intervals, etc.