Analysis Qualifying Examination

Tuesday, January 19, 2021, Noon-5:00pm
INSTRUCTIONS: Work 5 of the following 6 problems. Write on only one side of each page. Each problem is worth 20 points.

1) Suppose: (X, d) and (Y, ρ) are metric spaces; (Y, ρ) is compact; and $\phi: Y \rightarrow X$ is a continuous and onto function.
a) A well-known theorem states that if $F \subseteq Y$ is compact, then $\phi(F)$ is also compact. Prove this theorem, and conclude that (X, d) is a compact metric space.
b) Suppose $G \subseteq X$ and $\phi^{-1}(G)$ is an open set. Prove that G is an open set.
2) Let $\left(a_{n}\right)_{n=1}^{\infty}$ be a bounded sequence of real numbers. Being sure to include all details, prove that

$$
\liminf _{n \rightarrow \infty} a_{n} \leq \liminf _{n \rightarrow \infty} \frac{a_{1}+a_{2}+\cdots+a_{n}}{n}
$$

(Suggestion: Notice that for $n, N \in \mathbb{N}$ and $n>N, \frac{a_{1}+\cdots+a_{N}}{n}+\frac{a_{N+1}+\cdots+a_{n}}{n}=\frac{a_{1}+\cdots+a_{n}}{n}$. Approximate $\frac{a_{N+1}+\cdots+a_{n}}{n}$ in terms of $\liminf _{n \rightarrow \infty} a_{n}$ and examine what happens if you hold N fixed and let n grow.)
3) Suppose $f:[a, b] \rightarrow \mathbb{R}$ is Riemann integrable and $\int_{a}^{b}|f(t)| d t=0$.
a) If f is continuous, prove that $f(t)=0$ for every $t \in[a, b]$.
b) Give an example (with proof) of a non-zero Riemann integrable function such that $\int_{a}^{b}|f(t)| d t=0$.
4) Let $Y \subseteq[0,1]$ be the usual Cantor set ${ }^{1}$ and let $C(Y)$ be the collection of all continuous complex-valued functions on Y. A function $p \in C(Y)$ is a projection if for every $y \in Y, p(y)^{2}=p(y)$.
Given $f \in C(Y)$ and $\varepsilon>0$, prove that there exists $n \in \mathbb{N}$, projections $\left\{p_{k}\right\}_{k=1}^{n} \subseteq C(Y)$ and complex numbers $\left\{\alpha_{k}\right\}_{k=1}^{n}$ such that for every $y \in Y$,

$$
\left|f(y)-\sum_{k=1}^{n} \alpha_{k} p_{k}(y)\right|<\varepsilon
$$

5) Suppose $\left(a_{n}\right)$ is a decreasing sequence of real numbers and $\sum_{n=1}^{\infty} a_{n}$ converges. Prove that $\lim _{n \rightarrow \infty} n a_{n}=0$.
6) For $x \in \mathbb{R}$, consider the series, $\sum_{n=1}^{\infty} \frac{1}{n^{2}+x^{2}}$.
a) Prove this series converges for every $x \in \mathbb{R}$.
b) Set $f(x)=\sum_{n=1}^{\infty} \frac{1}{n^{2}+x^{2}}$. Prove that f is differentiable at each $x \in \mathbb{R}$. Also, find a formula for $f^{\prime}(x)$ (in terms of a series), being sure to justify that your formula is correct.
[^0]
[^0]: ${ }^{1}$ Recall this is the set obtained by removing $(1 / 3,2 / 3)$ from $[0,1]$, then removing the middle third from the remaining intervals, etc.

